AIRPLANE DESIGN

PART IV: LAYOUT DESIGN OF LANDING GEAR AND SYSTEMS

by

Dr. Jan Roskam
Ackers Distinguished Professor
of Aerospace Engineering
The University of Kansas
Lawrence, Kansas

NO PART OF THIS BOOK MAY BE REPRODUCED WITHOUT PERMISSION FROM THE AUTHOR

Copyright: Roskam Aviation and Engineering Corporation
Rt4, Box 274, Ottawa, Kansas, 66067
Tel. 913-2421624

First Printing: 1986 (softbound)
Second Printing: 1989 (hardbound)
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE OF SYMBOLS</td>
<td>vii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>xi</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. LANDING GEAR LAYOUT DESIGN</td>
<td></td>
</tr>
<tr>
<td>2.1 FUNCTION OF LANDING GEAR COMPONENTS</td>
<td>3</td>
</tr>
<tr>
<td>2.2 DISCUSSION OF LANDING GEAR TYPES</td>
<td>10</td>
</tr>
<tr>
<td>2.3 COMPATIBILITY OF LANDING GEAR AND RUNWAY SURFACE: DETERMINATION OF ALLOWABLE WHEEL LOADS</td>
<td></td>
</tr>
<tr>
<td>2.3.1 Nosegear Steering Loads</td>
<td>14</td>
</tr>
<tr>
<td>2.3.2 Gear Loads From A Surface Viewpoint</td>
<td>14</td>
</tr>
<tr>
<td>2.3.2.1 Allowable gear loads for Type 1 surfaces</td>
<td>15</td>
</tr>
<tr>
<td>2.3.2.2 Allowable gear loads for Types 2 and 3 surfaces</td>
<td>15</td>
</tr>
<tr>
<td>2.4 TIRES: TYPES, PERFORMANCE, SIZING AND DATA</td>
<td>20</td>
</tr>
<tr>
<td>2.4.1 Tire Types, Tire Construction, and Tire Descriptions</td>
<td>20</td>
</tr>
<tr>
<td>2.4.2 Tire Performance: Load, Deflection and Shock Absorption Capability</td>
<td>23</td>
</tr>
<tr>
<td>2.4.3 Tire Clearance Requirements</td>
<td>26</td>
</tr>
<tr>
<td>2.4.4 Tire Sizing Procedure</td>
<td>26</td>
</tr>
<tr>
<td>2.4.5 Tire Data</td>
<td>30</td>
</tr>
<tr>
<td>2.5 STRUT-WHEEL INTERFACE, STRUTS AND SHOCK ABSORBERS</td>
<td>45</td>
</tr>
<tr>
<td>2.5.1 Strut-Wheel Interface</td>
<td>45</td>
</tr>
<tr>
<td>2.5.2 Devices Used For Shock Absorption</td>
<td>47</td>
</tr>
<tr>
<td>2.5.3 Shock Absorption Capability of Tires and Shock Absorbers: Sizing of Struts</td>
<td>53</td>
</tr>
<tr>
<td>2.6 BRAKES AND BRAKING CAPABILITY</td>
<td>57</td>
</tr>
<tr>
<td>2.6.1 Braking and Brakes</td>
<td>57</td>
</tr>
<tr>
<td>2.6.2 Brake Actuation</td>
<td>61</td>
</tr>
<tr>
<td>2.7 DESIGN CONSIDERATIONS FOR LANDING GEARS OF CARRIER BASED AIRPLANES</td>
<td>65</td>
</tr>
<tr>
<td>2.7.1 Description of Flight Deck Features</td>
<td>65</td>
</tr>
<tr>
<td>2.7.2 Description of a Catapult System</td>
<td>65</td>
</tr>
<tr>
<td>2.7.3 Catapulting Procedures and Required Landing Gear Provisions</td>
<td>68</td>
</tr>
<tr>
<td>2.7.4 Description of Arresting Gear System</td>
<td>71</td>
</tr>
<tr>
<td>2.7.5 Arresting Procedures and Required Landing Gear and Arresting Hook Provisions</td>
<td>74</td>
</tr>
<tr>
<td>2.8 REVIEW OF LANDING GEAR LAYOUT GEOMETRY</td>
<td>75</td>
</tr>
<tr>
<td>2.8.1 Review of Overall Landing Gear Disposition</td>
<td>75</td>
</tr>
</tbody>
</table>
2.8.2 Critical Landing Gear Dimensions: Tires, Struts, Drag Links and Side Brace 75
2.8.3 Landing Gear Layout Checklist 79
2.9 STEERING, TURNRADII AND GROUND OPERATION 80
 2.9.1 Steering Systems 80
 2.9.2 Turnradius and Ground Operation 80
2.10 RETRACTION KINEMATICS 84
 2.10.1 Fundamentals of Retraction Kinematics 84
 2.10.2 Location of the Retraction Actuator 86
 2.10.3 Special Problems in Gear Retraction 92
 2.10.4 Examples of Landing Gear Retraction Methods 92
2.11 EXAMPLE LANDING GEAR LAYOUTS 102
 2.11.1 Fixed Gear Layouts 102
 2.11.2 Retractable Gear Layouts 102
2.12 UNCONVENTIONAL LANDING GEAR CONFIGURATIONS 118
 2.12.1 Cross Wind Landing Gears 118
 2.12.2 Gears With Driven Wheels 118
 2.12.3 Jump-struts and Ski-jumps 121
 2.12.4 Droppable Gears 121
 2.12.5 Beaching Gears 123
 2.12.6 Skis 123
 2.12.7 Floats 123
 2.12.8 Air Cushion Landing System (ACLS) 123

3. WEAPONS INTEGRATION AND WEAPONS DATA 127
 3.1 AERODYNAMIC DESIGN CONSIDERATIONS 127
 3.1.1 Drag Considerations 127
 3.1.2 Stability and Control Considerations 131
 3.1.3 Separation Considerations 134
 3.1.4 Gun Exhaust Gas Considerations 135
 3.2 STRUCTURAL DESIGN CONSIDERATIONS 137
 3.3 DESIGN FOR LOW RADAR AND INFRARED DETECTABILITY 140
 3.3.1 Design Considerations for Low Radar Detectability 140
 3.3.2 Design Considerations for Low Infrared Detectability 145
 3.4 EXAMPLES OF WEAPON INSTALLATIONS 148
 3.4.1 Examples of Gun Installations 148
 3.4.2 Examples of External Store Arrangements 148
 3.4.3 Example of an Internal Store Installation 148
 3.4.4 Examples of Avionics Installations 148
 3.4.5 Example of Armor Plating 148
 3.5 WEAPON AND MILITARY PAYLOAD DATA 156
 3.5.1 Guns, Gun Pods and Rocket Launchers 156
 3.5.2 Free-Fall Munitions (Bombs) and Ejector Racks 164
 3.5.3 Missiles 169
4. FLIGHT CONTROL SYSTEM LAYOUT DESIGN

4.1 LAYOUT OF REVERSIBLE FLIGHT CONTROL SYSTEMS

4.1.1 Reversible Lateral Flight Control Systems

4.1.2 Reversible Longitudinal Flight Control Systems

4.1.3 Reversible Directional Flight Control Systems

4.1.4 Important Design Aspects of Reversible Flight Control Systems

4.1.4.1 Mechanical design requirements associated with cable systems

4.1.4.2 Mechanical design requirements associated with push-pull (push-rod) systems

4.1.4.3 Efficiency considerations

4.1.4.4 Calculation of cable and/or push-rod forces from control surface hinge moments

4.1.4.5 Control surface hinge moments and control surface tabs and types

4.1.4.6 Aerodynamic balance requirements and control surface gadgets

4.1.4.7 Mass balancing requirements

4.2 EXAMPLES OF REVERSIBLE FLIGHT CONTROL SYSTEMS

4.3 LAYOUT OF IRREVERSIBLE FLIGHT CONTROL SYSTEMS

4.3.1 Actuators (Servos)

4.3.1.1 Operation of hydraulic actuators

4.3.1.2 Operation of electrohydrostatic actuators

4.3.1.3 Operation of electromechanical actuators

4.3.2 Sizing of Actuators

4.3.3 Basic Arrangements of Irreversible Flight Control Systems

4.3.3.1 Hydraulic system with mechanical signalling

4.3.3.2 Hydraulic system with electrical or optical signalling

4.3.3.3 Separate surface control systems with electrical or optical signalling

4.3.3.4 Electromechanical flight control systems

4.3.4 Design Problems With Irreversible Flight Control Systems
4.3.5 Control Routing Through Folding Joints
4.3.6 Iron Birds
4.4 EXAMPLES OF IRREVERSIBLE FLIGHT CONTROL SYSTEMS
4.5 TRIM SYSTEMS
4.6 HIGH LIFT CONTROL SYSTEMS
4.7 PROPULSION CONTROL SYSTEMS

5. FUEL SYSTEM LAYOUT DESIGN
5.1 SIZING OF THE FUEL SYSTEM
5.2 GUIDELINES FOR FUEL SYSTEM LAYOUT DESIGN
5.3 FIREEXTINGUISHING SYSTEM
5.4 IN-FLIGHT REFUELING SYSTEMS
5.5 EXAMPLES OF FUEL SYSTEM LAYOUTS

6. HYDRAULIC SYSTEM LAYOUT DESIGN
6.1 FUNCTIONS OF HYDRAULIC SYSTEMS
6.2 SIZING OF THE HYDRAULIC SYSTEM
6.2.1 Normal Operation
6.2.2 Emergency Operation
6.3 GUIDELINES FOR HYDRAULIC SYSTEM DESIGN
6.4 HYDRAULIC SYSTEM LAYOUT EXAMPLES

7. ELECTRICAL SYSTEM LAYOUT DESIGN
7.1 MAJOR COMPONENTS OF ELECTRICAL SYSTEMS
7.2 SIZING OF ELECTRICAL SYSTEMS
7.3 GUIDELINES FOR LAYOUT OF ELECTRICAL SYSTEMS
7.4 EXAMPLE LAYOUTS OF ELECTRICAL SYSTEMS

8. ENVIRONMENTAL CONTROL SYSTEM LAYOUT DESIGN
8.1 PRESSURIZATION SYSTEM
8.2 PNEUMATIC SYSTEM
8.3 AIRCONDITIONING SYSTEM
8.4 OXYGEN SYSTEM

9. COCKPIT INSTRUMENTATION, FLIGHT MANAGEMENT AND AVIONICS SYSTEM LAYOUT DESIGN
9.1 COCKPIT INSTRUMENTATION LAYOUT
9.2 FLIGHT MANAGEMENT AND AVIONICS SYSTEM LAYOUT
9.3 ANTENNA SYSTEM LAYOUT
9.4 INSTALLATION, MAINTENANCE AND SERVICING CONSIDERATIONS

10. DE-ICING, ANTI-ICING, RAIN REMOVAL AND DEFOG SYSTEMS
10.1 DE-ICING AND ANTI-ICING SYSTEMS
10.1.1 De-Icing Systems
10.1.2 Anti-Icing Systems
10.2 RAIN REMOVAL AND DEFOG SYSTEMS

11. ESCAPE SYSTEM LAYOUT DESIGN

Part IV Contents Page iv